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Abstract. We present a detailed discussion of the collinear subtraction terms needed to establish a massive
variable-flavor-number scheme for the one-particle inclusive production of heavy quarks in hadronic collisions.
The subtraction terms are computed by convoluting appropriate partonic cross sections with perturbative
parton distribution and fragmentation functions relying on the method of mass factorization. We find (with
one minor exception) complete agreement with the subtraction terms obtained in a previous publication
by comparing the zero-mass limit of a fixed-order calculation with the genuine massless results in the
MS scheme. This presentation will be useful for extending the massive variable-flavor-number scheme to
other processes.

1 Introduction

Heavy-quark production in highly energetic e+e−, γγ, γp,
ep and pp̄ collisions has attracted much interest in the past
few years, both experimentally and theoretically. Heavy
quarks are those with masses m � ΛQCD so that αs(m) �
1, where αs(µR) is the strong-coupling constant at renor-
malization scaleµR.According to this definition, the charm,
bottom and top quarks (c, b, t) are heavy whereas the up,
down and strange quarks (u, d, s) are light. Since αs(m) �
1, heavy-quark production is a calculable process in per-
turbative QCD. The heavy-quark mass acts as a cutoff for
initial- and final-state collinear singularities and sets the
scale for the perturbative expansion in αs.

On this basis, most of the next-to-leading-order (NLO)
QCD calculations have been performed in the past [1–
4]. Corresponding results are reliable when m is the only
large scale, as for example in calculations of the total cross
section or if any additional scale, for example the transverse
momentum pT of the produced heavy quark in γγ, γp and
pp̄ reactions or the lepton momentum transfer Q in deep-
inelastic ep scattering (DIS), is not much larger than the
mass m. However, when pT (or Q) is much larger than the
mass, large logarithms ln(p2

T/m2) or ln(Q2/m2) arise to all
orders, so that fixed-order perturbation theory is no longer
valid. As is well known, these logarithms can be resummed
and, this way, the perturbation series can be improved.

The isolation and resummation of large logarithms is
similar to the conventional massless parton model ap-
proach, where initial- or final-state collinear singularities
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are absorbed into parton distribution functions (PDF) of
the incoming hadrons or photons and into fragmentation
functions (FF) for the produced light hadrons (or photons),
respectively. Therefore, this approach is usually referred to
as zero-mass variable-flavor-number scheme (ZM-VFNS).
The notion “variable flavor number” is used since, in the
parton model, the number of active quark flavors is in-
creased by one unit, nf → nf + 1, when the factorization
scale crosses certain transition scales (which are usually
taken to be of the order of the heavy-quark mass)1. In con-
trast, the fixed-order treatment, where m is kept as a large
scale, is called the fixed-flavor-number scheme (FFNS),
since the number of flavors in the initial state is fixed to
nf = 3 (4) for charm (bottom) production. One can com-
bine cross sections calculated in the FFNS after certain
modifications with heavy-quark FFs and PDFs which con-
tain the resummed large logarithms. This prescription is
called the massive or general-mass VFNS (GM-VFNS)2.

One might expect that the partonic cross sections calcu-
lated in the FFNS approach the corresponding ZM-VFNS
cross sections in the limit m → 0 if the collinear singular
terms proportional to ln(m2/s) are subtracted, i.e., the
subtracted FFNS cross sections differ from the ZM-VFNS
cross sections only by terms ∼ m2/p2

T. If this was true,
the FFNS and ZM-VFNS results for the cross sections
would approach each other for p2

T � m2. This expecta-
tion, however, is not true, as was first demonstrated by
Mele and Nason [8] for inclusive heavy-quark production
in e+e− annihilation at NLO (e+e− → QQg, where Q is
the heavy quark). They found that the limit m → 0 of

1 For a detailed discussion see the appendix in [5] and refer-
ences given there.

2 For details see, e.g., [6, 7].
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the cross section for e+e− → QQg and the cross section
calculated with m = 0 from the beginning (in the MS
scheme) differ by finite terms of O(αs). The reason for the
occurrence of these finite terms is the different definition of
the collinear singular terms in the two approaches. In the
ZM-VFNS calculation, the heavy-quark mass is set to zero
from the beginning and the collinearly divergent terms are
defined with the help of dimensional regularization. This
fixes the finite terms in a specific way (in a given factor-
ization scheme), and their form is inherent to the chosen
regularization procedure. If, on the other hand, one starts
with m �= 0 and performs the limit m → 0 afterwards, the
finite terms can be different. In [8], it was shown that these
additional finite terms emerging in the limit m → 0 out
of the theory with m �= 0 can be generated in the theory
for m = 0 with MS factorization by convoluting this cross
section with a partonic fragmentation function dQ→Q(x, µ)
for the transition from massless to massive heavy quarks
Q (the explicit form of dQ→Q(x, µ) will be given later).

If this interpretation of the finite terms in the the-
ory with m �= 0 as partonic FF is generally true, then
dQ→Q(x, µ) should be process independent and could be
used in any other heavy-quark production process. The
universality of the partonic FF has been confirmed by
performing the same calculation as in [8] for the process
γ�Q → Qg [9,10], where γ� is a space-like virtual photon,
γγ → QQg [11] and gg → QQg [12] and showing that the
finite terms are obtained from a convolution of the corre-
sponding LO cross sections with dQ→Q(x, µ). The process
independence of dQ→Q(x, µ) was established on more gen-
eral grounds in [13]. Moreover, process-independent deriva-
tions of the partonic FFs have been performed by Ma [14]
and recently by Melnikov and Mitov [15, 16], who have
computed the partonic FFs to O(α2

s ).
The fact that the theory with m �= 0 and the ZM-

VFNS are related by the convolution of the ZM-VFNS
cross section with partonic FFs has been used in several
ways. In [8], dQ→Q(x, µ0) was used as the initial condi-
tion, at µ = µ0 = O(m), for the calculation of dQ→Q(x, µ)
at an arbitrary scale µ with the standard evolution equa-
tion. Later, Cacciari and Greco calculated with the same
procedure the cross section for heavy-quark production
in pp̄ and pp collisions from the ZM-VFNS cross section
supplemented with evolved dQ→Q(x, µ) as a function of
pT [17]. Partonic FFs used together with a zero-mass hard-
scattering cross section have subsequently been applied also
to heavy-quark production in γγ [18] and γp [19, 20] pro-
cesses. In [20], the approach was generalized to the reaction
γ + p → D� +X. The transition c → D� was described by
a FF containing besides a non-perturbative contribution
the purely perturbative partonic FF. The non-perturbative
part was described by a function containing two parame-
ters which were fixed by comparison to experimental data
for e+ + e− → D� + X. In [17–20], the perturbative FF
approach was motivated by the requirement to match the
ZM-VFNS as close as possible to the m �= 0 theory. This
could be achieved since at small pT = O(m) the evolution
of dQ→Q(x, µ0) was not yet effective and, therefore, dQ→Q

was just taking account of the difference of the two theories.

However, terms proportional to m2/p2
T are not included in

this way.
The so-called FONLL approach [21–25] is an attempt

to repair this deficiency. There, the ZM-VFNS with pertur-
bative FFs together with a non-perturbative component
was combined with the FFNS with nf = 3 (4) for charm
(bottom) production, introducing a pT-dependent suppres-
sion factor by hand. In addition, m2/p2

T terms have been
included in extensions of the ACOT scheme [26, 27] to
one-particle inclusive production of D mesons in charged-
current and neutral-current DIS [10,28]. In [29], the ACOT
scheme has been applied to one-particle inclusive heavy-
quark production in pp̄ collisions.

Instead of incorporating the finite terms dQ→Q(x, µ)
into the initial conditions of the perturbative FFs at µ =
µ0 = O(m), one can take this difference also into account by
switching to a new factorization scheme, which we call the
massive factorization scheme. In this scheme, starting from
the ZM-VFNS, one adjusts the factorization of the final-
state collinear singularities associated with the massive
quarks in such a way that it matches the massive calculation
in the limit m → 0. Of course, the hard-scattering cross
sections of any other process for inclusive D� production
must be transformed to the new scheme as well. This is
particularly important for the reaction e+ +e− → D� +X
from which the information on the non-perturbative FF for
c → D� is obtained by comparison to experimental data.
So far, calculations in this massive factorization scheme
were performed for γ + p → D� + X in [30], where also
fits of the new FFs for c → D� have been presented (for
a comparison of FFs in the massive and the MS scheme,
see [31]).

The simplest way to connect the truly massless cross
sections in the MS scheme with the massive cross sections is
to subtract the finite pieces dQ→Q(x, µ0) from the massive
theory. In this way, one can incorporate also the m2/p2

T
terms, as given in the massive theory, with the advantage
that themassive theory approaches theZM-VFNS theory in
the limit pT → ∞ or m → 0. In addition, by including also
the terms proportional to lnm2 contained in dQ→Q(x, µ)
one can obtain not only the finite subtraction terms but
also the terms needed for a transition to a new factorization
scale. This approach has been applied to γ + γ → D� +
X [11,32], to γ+p → D�+X [33] and to p+p̄ → D�+X [12].
In particular in [12], we obtained the finite subtraction
terms by comparing the cross sections of the massive theory,
worked out by Bojak and Stratmann [34, 35], in the limit
m → 0 with the cross sections in the genuine massless
theory in theMS factorization scheme as deduced byAversa
et al. [36] in a form which is equivalent to the convolution
of the massless cross section with dQ→Q(x, µ).

We are going to present details of this quite involved
calculation in this paper. The purpose is, on the one hand,
to exactly demonstrate that all the subtraction terms are
generated by the convolution with partonic FFs, at NLO
just with dQ→Q(x, µ). On the other hand, we hope that the
detailed presentation will show how the calculation carries
over to other processes a+b → D� +X. Since heavy-quark
production in hadron-hadron collisions is the most com-
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Fig. 1a–c. Feynman diagrams for the LO
gluon–gluon fusion process g + g → Q + Q
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Fig. 2. The LO quark–
antiquark annihilation process
q + q → Q + Q

plex case, we shall concentrate on this particular process.
Some results will also be directly relevant for heavy-quark
production in γγ and γp processes.

The outline of this paper is as follows. In Sect. 2, we
consider heavy-quark production in hadronic collisions, in-
troduce the notation and review the derivation of the sub-
traction terms in [12]. In Sect. 3, we present the convolution
formulas, from which, in Sect. 4, the various subtraction
terms are calculated and compared with the results in [12].
Section 5 contains a summary and some concluding re-
marks. The subprocess cross sections needed in the convo-
lutions have been collected in Appendix A for convenience.

2 Hadroproduction of heavy quarks

In the FFNS, the following partonic subprocesses con-
tribute to p + p̄ → H + X in leading order (LO) and
NLO, where H = D, D�, B . . . is a heavy meson:
(1) g(k1)+g(k2) → Q(p1)+Q(p2)+[g(p3)], where Q = c, b
denotes a heavy quark. The LO Feynman diagrams are
shown in Fig. 1.
(2) q(k1) + q̄(k2) → Q(p1) + Q(p2) + [g(p3)]. In LO, there
is one Feynman diagram, which is shown in Fig. 2.
(3) g(k1) + q(k2) → Q(p1) + Q(p2) + q(p3) and g(k1) +
q̄(k2) → Q(p1) + Q(p2) + q̄(p3) contribute at NLO. The
Feynman diagrams for these processes, as well as those for
the NLO contributions of gg → QQg and qq̄ → QQg, can
be found in Appendix B.

Our aim is to calculate differential cross sections with
an observed heavy quark Q of momentum p1. Therefore
we define the following invariants:

s = (k1 + k2)2 ,

t1 = t − m2 = (k1 − p1)2 − m2 ,

u1 = u − m2 = (k2 − p1)2 − m2 , (1)

and

s2 = S2 − m2 = (k1 + k2 − p1)2 − m2 = s + t1 + u1 , (2)

with s + t1 + u1 = 0 at LO, where p3 = 0. As usual, we
introduce the dimensionless variables v and w by

v = 1 +
t1
s

, w = − u1

s + t1
, (3)

so that

t1 = −s(1 − v), u1 = −svw . (4)

In LO, we have w = 1.
In a recent publication [12], we have presented a NLO

calculation for the inclusive production of D� mesons in pp̄
collisions including heavy-quark mass effects in the hard-
scattering cross sections. The following procedure has been
adopted [11,32] (see also [7, 37]).
(i) We have derived the zero-mass limit of the cross sections
in the massive FFNS with nf = 3 [34,35] for the partonic
subprocesses listed above only keeping m as a regulator in
logarithms ln

(
m2/s

)
. Special care was required in order

to recover the distributions δ(1 − w), (1/(1 − w))+ and
(ln(1 − w)/(1 − w))+ occurring in the massless MS calcu-
lation; see, e.g., (12) in [12]. The result, generically denoted
limm→0 dσ̃(m), contains mass singular logarithms ln(m2),
but collinear singularities associated with light quarks and
gluons are already subtracted in dσ̃(m).
(ii) Then we have compared the massless limit with the
corresponding hard-scattering cross sections in the genuine
massless MS calculation in order to identify appropriate
subtraction terms. Generically, one can write

dσsub = lim
m→0

dσ̃(m) − dσ̂MS , (5)

where dσ̂MS is a hard-scattering cross section in the genuine
MS calculation.
(iii) The desired massive hard-scattering cross sections have
then been constructed by removing the subtraction terms
from the massive cross sections in the fixed-order theory:

dσ̂(m) = dσ̃(m) − dσsub . (6)

By this procedure, the collinear logarithms ln(m2/s) along
with finite terms which are independent of the heavy-quark
mass are subtracted from dσ̃(m). On the other hand, all
finite mass terms of the form (m2/p2

T)n (with an integer
n) are kept in the hard-scattering cross sections.
(iv) Contributions with charm quarks in the initial state
have been included in the massless approach. It can be
shown that neglecting the corresponding heavy-quark mass
terms corresponds to a convenient choice of scheme (S-
ACOT scheme [38]) which does not imply any loss of pre-
cision. In fact, the error which is made is of the same order as
the error of the factorization formula, as has been discussed
in the context of heavy-quark production in deep-inelastic
scattering [38,39]. Obviously, this rule is of great practical
importance since the existing massless results for the hard-
scattering cross sections [36] can simply be used, whereas



202 B.A. Kniehl et al.: Collinear subtractions in hadroproduction of heavy quarks

their massive analogues are unknown and would require a
dedicated calculation of these processes3.

Note that also the FONLL calculation in [21] has been
constructed with the help of the zero-mass limit of the fixed-
order calculation in [1,2]. On the other hand, in the GM-
VFNS of [29], the collinear subtractions have been obtained
using the methods of mass factorization in a massive regu-
larization scheme. In this approach, the subtraction terms
are computed by convolutions of appropriate subprocesses
with universal partonic PDFs and FFs. However, the dis-
cussion in [29] is rather generic without presenting many
details. It is the purpose of this paper to provide a detailed
description of the derivation of the collinear subtraction
terms using the convolution method and to compare with
the results obtained in our previous publication [12].

3 Mass factorization with massive quarks

The starting point in our approach is the basic factorization
formula at the partonic level:

dσ̃(a + b → Q + X)

= fa→i(x1) ⊗ fb→j(x2) ⊗ dσ̂(i + j → k + X)

⊗dk→Q(z) , (7)

where the dσ̃ denote partonic cross sections (with singular-
ities due to light-quark and gluon lines already subtracted
via conventional mass factorization [40]), and the dσ̂ are
IR-safe hard-scattering cross sections which are free of log-
arithms of the heavy-quark mass. The indices a, b, and i, j,
k denote partons, and a sum over double indices is implied
here and in the following. All logarithms of the heavy-quark
mass (i.e. the mass singularities in the zero-mass limit) are
contained in the partonic distribution functions fa→i and
in the partonic fragmentation functions dk→Q. The con-
volution ⊗ denotes the usual convolution integral and will
be specified below in (14), (23) and (30). Equation (7) re-
flects the fact that the partonic cross sections dσ̃ can be
factorized into process-dependent IR-safe hard-scattering
cross sections dσ̂, which are well-behaved and finite in the
limit m → 0, and universal (process-independent) partonic
PDFs fa→i and partonic FFs dk→ Q.

Equation (7) can be expanded in powers of αs with the
help of

fa→i(x1) = δiaδ(1 − x1) + f
(1)
a→i + f

(2)
a→i + . . . ,

fb→j(x2) = δjbδ(1 − x2) + f
(1)
b→j + f

(2)
b→j + . . . ,

dk→Q(z) = δkQδ(1 − z) + d
(1)
k→Q + d

(2)
k→Q + . . . , (8)

dσ̂ = dσ̂(0) + dσ̂(1) + dσ̂(2) + . . . ,

dσ̃ = dσ̃(0) + dσ̃(1) + dσ̃(2) + . . .

For the partonic PDFs and FFs, the superscript denotes the
order of αs. For the cross sections, it indicates the relative

3 For deep-inelastic scattering, massive-quark-initiated coef-
ficients have been obtained in [9,10]; the results for this simpler
case are already quite involved.

order in αs with respect to the Born cross sections. The
expansion of (7) can be used to determine order by order
the relation between the hard-scattering and partonic cross
sections. Up to NLO, one finds

dσ̂(0)(a + b → Q + X) (9)

= dσ̃(0)(a + b → Q + X) = dσ(0)(a + b → Q + X) ,

dσ̂(1)(a + b → Q + X) = dσ̃(1)(a + b → Q + X)

−f
(1)
a→i(x1) ⊗ dσ(0)(i + b → Q + X)

−f
(1)
b→j(x2) ⊗ dσ(0)(a + j → Q + X) (10)

−dσ(0)(a + b → k + X) ⊗ d
(1)
k→Q(z) .

The three convolutions in (10) can be identified with the
subtraction term dσsub in (6).

The factorization in (7) has to be defined at a definite
energy or momentum scale which enters as an argument
into the PDFs, FFs and dσ̂. We denote the factorization
scales by µF for initial-state factorization (entering the
PDFs) and by µ′

F for final-state factorization (entering the
FFs). The renormalization scale will be called µR.

3.1 Partonic parton distribution
and fragmentation functions

The functions f
(1)
i→j for the initial state are given in the MS

scheme4, keeping the heavy-quark mass as a regulator for
the collinear divergences, by

f
(1)
g→Q(x, µR, µF) =

αs(µR)
2π

P (0)
g→q(x) ln

µ2
F

m2 ,

f
(1)
Q→Q(x, µR, µF) (11)

=
αs(µR)

2π
CF

[
1 + x2

1 − x

(
ln

µ2
F

m2 − 2 ln(1 − x) − 1
)]

+
,

f (1)
g→g(x, µR, µF) = −αs(µR)

2π
2
3

Tf ln
µ2

F

m2 δ(1 − x) ,

where P
(0)
g→q(x) = 1

2 [x2 +(1−x)2] and P
(0)
q→q(x) = CF[(1+

x2)/(1 − x)]+ (appearing in f
(1)
Q→Q) are the conventional

(space-like) one-loop splitting functions and Tf = 1/2. The
function f

(1)
Q→Q(x, µR, µF) will not be used in the following,

since heavy quarks in the initial state are treated asmassless
quarks as explained in Sect. 2. It would be present in cases
where massive heavy quarks Q appear in the initial state
as for example in [9, 10,26,27].

The functions d
(1)
i→j for the final state read [8–10,14]

d
(1)
g→Q(z, µR, µ′

F) =
αs(µR)

2π
P (0)

g→q(z) ln
µ′ 2

F

m2 ,

4 Note that it is assumed that the MS scheme is defined in
the conventional way where photons and gluons have d − 2
degrees of freedom (where d is the number of space-time di-
mensions). Furthermore, subtractions fij ⊗dσ(0) are performed
with subprocess cross sections calculated in d dimensions.
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Fig. 3. Sketch of kinematics of mass factoriza-
tion for a upper incoming line b lower incoming
line and c outgoing line

d
(1)
Q→Q(z, µR, µ′

F) (12)

=
αs(µR)

2π
CF

[
1 + z2

1 − z

(
ln

µ′ 2
F

m2 − 2 ln(1 − z) − 1
)]

+
.

Generally, the splitting functions entering the partonic FFs
are time-like splitting functions which are, however, identi-
cal to the space-like splitting functions at the one-loop level.
It should be noted that the function f

(1)
Q→Q(x, µR, µF) in

(11) is of the same form as d
(1)
Q→Q(x, µR, µ′

F) at O(α1
s ) [9,10].

This will not be true at higher orders since the NLO space-
and time-like splitting functions P

(1)
q→q(x) are different. All

the other partonic PDFs and FFs not listed here are zero
at O(α1

s ). Furthermore, analogous results for processes in-
volving photon splittings can be found by obvious replace-
ments (g → γ, αs → α and appropriate modifications of
color factors) in (11) and (12).

The partonic PDFs and FFs are known to order O(α2
s ).

They would be needed, together with the three-loop beta
function of QCD, for computing subtraction terms at next-
to-NLO (NNLO). For the initial state, the partonic PDFs
at order O(α2

s ) can be found in [41] (with the excep-
tion of f

(2)
Q→Q(x), which is unknown). Recently, also the

O(α2
s ) contributions to the perturbative FFs have been

derived [15, 16]. It should be noted that, at O(α2
s ), all

of the perturbative PDFs and FFs are non-vanishing at
µF = m and µ′

F = m, respectively. In fact, the parts pro-
portional to logarithms of the factorization scale follow
from the evolution equations, so that the new information
obtained from the O(α2

s ) calculation is contained in the
non-vanishing pieces at µF, µ′

F = m.
In Sect. 4, we will need the distribution d

(1)
Q→Q(z̄) with

z̄ = 1− v + vw as a distribution in the kinematic variables
v and w. This form of d

(1)
Q→Q(z̄) can be written as

d
(1)
Q→Q(z̄) = A(v) δ(1 − w) + B(v)

1
(1 − w)+

+C(v)
(

ln(1 − w)
(1 − w)

)
+

+ D(v, w) , (13)

with

A(v) = CF
αs(µR)

2π
1
2v

×
[
ln

µ′
F

2

m2 (3 + 4 ln v) + 4(1 − ln v − ln2 v)

]
,

B(v) = CF
αs(µR)

2π
2
v

[
ln

µ′
F

2

m2 − 1 − 2 ln v

]
,

C(v) = −CF
αs(µR)

2π
4
v

,

D(v, w) = −CF
αs(µR)

2π
[2 − v(1 − w)]

×
[
ln

µ′
F

2

m2 − 1 − 2 ln v − 2 ln(1 − w)

]
.

3.2 Subtraction terms at NLO

We distinguish mass factorization in the initial state and in
the final state. For one-particle inclusive production, where
one final-state particle has a fixed momentum (above, we
had chosen p1), we have to distinguish further two cases
with initial-state singularities corresponding to t- and u-
channel scattering. A graphical representation of the sub-
traction terms in form of cut diagrams for all cases is shown
in Fig. 3. These diagrams can be found by applying all pos-
sible cuts to internal lines of the Feynman diagrams (see
Appendix B). The cuts are allowed if the 2 → 2 subpro-
cesses are kinematically possible and the 1 → 2 process
involves the splitting into a heavy-quark line. In an axial
gauge, the cut diagrams correspond to actual Feynman di-
agrams.

3.2.1 Initial-state factorization

In the first case with u-channel scattering (see Fig. 3a), the
collinear subtractions are given by

dσsub(a + b → Q + X)

=
∫ 1

0
dx1 f

(1)
a→i(x1, µR, µF)

×dσ̂(0) (i(x1k1) + b(k2) → Q(p1) + X)

≡ f
(1)
a→i(x1) ⊗ dσ̂(0)(i + b → Q + X) . (14)

Here a + b → Q + X stands for the one-particle inclusive
partonic subprocesses (g + g → Q + X, q + q̄ → Q + X,
g+q → Q+X, g+ q̄ → Q+X), fa→i(x1, µR, µF) describes
the collinear splitting of parton “a” into parton “i”, and
i + b → Q + X are the corresponding 2 → 2 subprocesses
with momenta x1k1, k2 and p1. A sum over i is implied, i.e.,
all possible splittings and subprocesses have to be taken
into account.

We define the following invariants for the subprocess:

ŝ = (x1k1 + k2)2 = x1s ,
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t̂1 = (x1k1 − p1)2 − m2 = x1t1 , (15)

û1 = (k2 − p1)2 − m2 = u1 ,

and

v̂ = 1 +
t̂1
ŝ

= v , ŵ = − û1

ŝ + t̂1
=

w

x1
, (16)

t̂1 = −ŝ(1 − v̂) , û1 = −ŝv̂ŵ = −ŝv̂ . (17)

For the calculation of d2σsub/(dvdw) in (14), it is conve-
nient to write the subprocess cross section as

d2σ̂(0)

dvdw
= J

d2σ̂(0)

dv̂dŵ
= J

dσ̂(0)

dv̂
δ(1 − ŵ) , (18)

with
δ(1 − ŵ) = wδ(x1 − x̄1) , x̄1 = w . (19)

The δ-function imposes the 2 → 2 process kinematics
ŝ + t̂1 + û1 = 0, i.e. ŵ = 1, and implies x̄1 = w. The
Jacobian reads

J =
∂(v̂, ŵ)
∂(v, w)

=
1
x1

. (20)

Combining these results we find

d2σ̂(0)

dvdw
=

dσ̂(0)

dv̂

∣∣∣∣
ŝ→x̄1s, v̂→v

δ(x1 − x̄1) , (21)

so that the subtraction terms for initial-state factorization
of the upper incoming line can be calculated as

d2σsub

dvdw
(a + b → Q + X) (22)

= f
(1)
a→i(x̄1, µR, µF)

dσ̂(0)

dv̂
(i + b → Q + X)

∣∣∣∣
v̂→v,ŝ→x̄1s

.

In the second case with t-channel scattering (see
Fig. 3b), the collinear subtractions are given by

dσsub(a + b → Q + X)

=
∫ 1

0
dx2 f

(1)
b→j(x2, µR, µF)

×dσ̂(0)(a(k1) + j(x2k2) → Q(p1) + X)

≡ f
(1)
b→j(x2) ⊗ dσ̂(0)(a + j → Q + X) . (23)

The invariants for the subprocess are now given by

ŝ = (k1 + x2k2)2 = x2s ,

t̂1 = (k1 − p1)2 − m2 = t1 , (24)

û1 = (x2k2 − p1)2 − m2 = x2u1 ,

and

v̂ =
x2 − 1 + v

x2
, ŵ =

x2vw

x2 − 1 + v
. (25)

Again, we write the subprocess cross section as in (18) with

δ(1 − ŵ) = x̄2
2

vw

1 − v
δ(x2 − x̄2) , x̄2 =

1 − v

1 − vw
, (26)

and

J =
∂(v̂, ŵ)
∂(v, w)

=
v

x2 − 1 + v
. (27)

For the 2 → 2 subprocess kinematics, we have ŵ = 1,
x2 = x̄2, v̂ = vw and J = 1/(x̄2w). Combining these
results, we find

d2σ̂(0)

dvdw
=

v

1 − vw

dσ̂(0)

dv̂

∣∣∣∣
ŝ→x̄2s, v̂→vw

δ(x2 − x̄2) , (28)

so that the subtraction terms for initial-state factorization
of the lower incoming line can be calculated as

d2σsub

dvdw
(a + b → Q + X)

= f
(1)
b→j(x̄2, µR, µF)

v

1 − vw

× dσ̂(0)

dv̂
(a + j → Q + X)

∣∣∣∣
v̂→vw, ŝ→x̄2s

. (29)

3.2.2 Final-state factorization

The case shown in Fig. 3c corresponds to factorization of
singularities in the final state. Here the collinear subtrac-
tions are given by

dσsub(a + b → Q + X)

=
∫ 1

0
dz dσ̂(0) (a(k1) + b(k2) → k(z−1p1) + X

)
×d

(1)
k→Q(z, µR, µ′

F)

≡ dσ̂(0)(a + b → k + X) ⊗ d
(1)
k→Q(z) . (30)

The invariants for the subprocess can be defined as follows:

ŝ = (k1 + k2)2 = s ,

t̂1 = (k1 − z−1p1)2 − m2 =
1
z

t1 , (31)

û1 = (k2 − z−1p1)2 − m2 =
1
z

u1 ,

and

v̂ =
z − 1 + v

z
, ŵ =

vw

z − 1 + v
. (32)

As before, we write the subprocess cross section as in (18)
with

δ(1 − ŵ) = vwδ(z − z̄) , z̄ = 1 − v + vw , (33)

and

J =
∂(v̂, ŵ)
∂(v, w)

=
1
z

v

z − 1 + v
. (34)
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From ŵ = 1 one finds z̄ = 1 − v + vw, v̂ = vw/z̄ and
J = 1/(z̄w). Combining these results, we find

d2σ̂(0)

dvdw
=

v

z̄

dσ̂(0)

dv̂

∣∣∣∣
ŝ→s, v̂→ vw

z̄

δ(z − z̄) , (35)

so that the subtraction terms for final-state factorization
can be calculated as

d2σsub

dvdw
(a + b → Q + X) (36)

= d
(1)
k→Q(z̄, µR, µ′

F)
v

z̄

× dσ̂(0)

dv̂
(a + b → k + X)

∣∣∣∣
v̂→vw/z̄,ŝ→s

.

3.3 Scheme dependence and implementation freedom

Before we turn to a discussion of our results for the collinear
subtraction terms calculated according to (22), (29) and
(36), we add some additional remarks.

The partonic PDFs and FFs introduced in Sect. 3.1 are
given in the MS factorization and renormalization scheme.
However, in the FFNS calculations of heavy-quark produc-
tion [1–4,34,35], a modification of the MS scheme has been
adopted, called MSm or decoupling scheme [42], where di-
vergences due to light quarks and gluons are treated in
the MS scheme and divergences arising from heavy-quark
loops are subtracted at zero momentum. In order to switch
from the MSm to the MS scheme the following terms have
to be added to the partonic cross sections of the fixed-order
calculations (see Sect. 3 in [21]):

−αs(µR)
2Tf

3π
ln

µ2
R

m2 dσ
(0)
qq̄ (q + q̄ → Q + X) , (37)

−αs(µR)
2Tf

3π
ln

µ2
R

µ2
F

dσ(0)
gg (g + g → Q + X) . (38)

In (37) and (38), the parts proportional to lnµ2
R are due

to the change of αs when going from the MSm to the MS
scheme. If α

(nf −1)
s (µR) and α

(nf )
s (µR) denote the strong-

coupling constants in the MSm and MS schemes, respec-
tively, one can derive from the renormalization group equa-
tion the following relationship between the couplings:

α
(nf −1)
s (µR) (39)

= α
(nf )
s (µR)

(
1 − α

(nf )
s (µR)

3π
Tf ln

µ2
R

m2

)
+ O(α3

s ) .

The parts proportional to lnµ2
F can be obtained by sub-

tracting from the cross section in the gluon–gluon channel
the term

(
f

(1)
g→g(x1) + f

(1)
g→g(x2)

)
⊗ dσ̂(0)(g + g → Q + Q)

(see Fig. 4). Since the function f
(1)
g→g(x) in (11) is propor-

tional to Dirac’s delta function, this amounts to a simple

��

��

��

��

���

��

��

��

��

���

Fig. 4. Feynman diagrams representing a f
(1)
g→g(x1) ⊗

dσ̂(0)(gg → QQ) and b f
(1)
g→g(x2) ⊗ dσ̂(0)(gg → QQ). The

fermion loops on the external gluon lines are heavy-quark loops

multiplication with the Born cross section in the gluon–
gluon channel. This subtraction term takes into account the
different treatment of heavy-quark loop contributions to
external gluon lines in the MS and the MSm schemes. The
coefficients in [12] are given in the MSm scheme. Changing
the results in [12] to the MS scheme according to (37) and
(38) has the expected effect of replacing β

(nf −1)
0 by β

(nf )
0

in the coefficients d̂1 and d̃1 in (28), (29) and (55) of [12],
so that in the MS scheme ∆d̂1 = ∆d̃1 = 0 in (35), (36)
and (59) of [12].

Even fixing the factorization scheme to the MS scheme
leaves some freedom in the implementation of a massive
VFNS, as has been discussed for the case of deep-inelastic
scattering in [6]. Consider for example the condition

lim
m→0

(dσ̃(m) − dσsub(m)) != dσ̂MS , (40)

which might be used as an attempt to define the subtraction
terms. dσ̂(MS) is the massless hard-scattering cross section
in the MS scheme. However, this requirement fixes the sub-
traction term dσsub(µ/m, m/pT) only up to terms m/pT
vanishing in the limit m → 0. The precise treatment of such
terms proportional to m/pT is not prescribed by factor-
ization. The prescription in (5), dσsub = limm→0 dσ̃(m) −
dσ̂MS, is minimal in the sense that no finite mass terms
are removed from the hard part in addition to the collinear
logarithms ln(m2/s).

The same is true from the point of view of mass fac-
torization: The factorization and renormalization scheme
unambiguously determines the partonic PDFs and FFs.
However, the convolution prescription leaves some freedom
in the choice of the integration variable and, therefore, is
only unique up to terms of the order m/Q (where Q is the
hard scale). One example is the ACOT-χ prescription [6]
in inclusive DIS, which guarantees the correct threshold
behaviour of the heavy-quark-initiated contributions. Fur-
thermore, it is possible to retain the mass terms in the sub-
process cross sections entering the convolution formulas.
Actually, this is done in the original ACOT scheme [26,27].

4 Subtraction terms: results

We now present the results for the collinear subtraction
terms, calculated using (22), (29) and (36). The universal
partonic PDFs can be found in Sect. 3.1. The required
subprocess cross sections have been listed for completeness
in Appendix A. We retain the heavy-quark mass terms in
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the subprocess cross sections entering the convolutions. In
order to compare with our results in [12], these mass terms
have to be dropped.

In order to facilitate the comparison with our previous
results, we expand the subtraction cross section in the
following form:

d2σsub

dvdw
= ∆c1δ(1 − w) + ∆c2

(
1

1 − w

)
+

+∆c3

(
ln(1 − w)

1 − w

)
+

+∆c5 ln v + ∆c10 ln(1 − w) + ∆c11 , (41)

and use the abbreviations

X = 1 − vw,

Y = 1 − v + vw, (42)

vi = i − v (i = 1, 2) .

4.1 Subtraction terms for g + g → Q + Q + g

The coefficients ∆ci are decomposed into an Abelian and
two non-Abelian parts, following [35]:

∆ci = C(s)
(

C2
F∆cqed

i +
C2

A

4
∆coq

i +
1
4

∆ckq
i

)
, (43)

with

C(s) =
α3

s

2(N2 − 1)s
. (44)

There are four different cut diagrams contributing to the
total result, which we discuss in the following.

dσ̂(0)(gg → QQ) ⊗ d
(1)
Q→Q(z)

The cut diagrams are shown in Fig. 5. The cross section
dσ̂(0)(gg → QQ) is proportional to the function

τ(v) =
v

1 − v
+

1 − v

v
+

4m2

sv(1 − v)

(
1 − m2

sv(1 − v)

)
,

(45)
which appears in the following expressions for the ∆ci.
They are given by

Fig. 5. Feynman diagrams representing dσ̂(0)(gg → QQ) ⊗
d
(1)
Q→Q(z)

∆c1 =

[(
3
4

+ ln v

)
ln

µ′
F

2

m2 + 1 − ln v − ln2 v

]

×2C(s)CFτ(v)[CF − CAv(1 − v)] , (46)

∆c2 =

(
ln

µ′
F

2

m2 − 1 − 2 ln v

)

×2C(s)CFτ(v)[CF − CAv(1 − v)] , (47)

∆c3 = −2 × 2C(s)CFτ(v) [CF − CAv(1 − v)] ,

(48)

∆c5 = C(s)
(

C2
F∆cqed

5 +
1
4

(C2
A − 1)∆coq

5

)
, (49)

where

∆cqed
5 =

2v

v1
− 2(2 − 2v + v2)

vw
+

2v2w

v1
+

4v

Y

+
m2

s

(
8v(3 − 2v)

v1
− 8(2 − 2v + v2)

vw
+

8v2w

v1

)

+
m4

s2

(−8v(11 − 15v + 6v2)
v2
1

+
8v1(2 − 2v + v2)

v2w2

+
8(2 + 4v − 7v2 + 4v3)

v2w
+

8v2(−5 + 4v)w
v2
1

− 8v3w2

v2
1

)
, (50)

∆coq
5 = −4v +

8vv2
1

Y 3 − 8v2v1

Y 2 +
4v(3 − 6v + 4v2)

Y

+
m2

s

(
−16v +

16v

Y

)
(51)

+
m4

s2

(
16v(3 − 2v)

v1
− 16(2 − 2v + v2)

vw
+

16v2w

v1

)
.

We find that ∆ckq
5 = −∆coq

5 and, finally,

∆c10 = ∆c5 , (52)

∆c11 =
1
2

∆c5

(
1 − ln

µ′
F

2

m2

)
. (53)

The latter two relations can be derived from d
(1)
Q→Q(z̄) in

(13) inspecting the expressions for B(v), C(v) and D(v, w).
(Note that the parts with B(v) and C(v) contribute to ∆c11
and ∆c10, respectively, in cases where the 1/(1 − w)+ is
canceled by factors (1 − w).)

Now we turn to a comparison with the results in [12],
which have been derived as described in Sect. 2. For µ′

F = m
(and neglecting terms of the order O(m2/s)), (46)–(53)
are in complete agreement with (18) and (21)–(24) in [12].
Furthermore, the parts proportional to ln(µ′ 2

F /m2) in (46)
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Fig. 6. Feynman diagrams represent-
ing dσ̂(0)(gg → gg) ⊗ d

(1)
g→Q(z)

and (47) are identical to (37) and (38) in [12]. As for ∆c11 in
(53), the part proportional to ln(µ′ 2

F /m2) is in agreement
with (41) and (43) for the “qed” and “kq” parts. The “oq”
part reproduces (42) in [12] after adding the contribution
given in (54).

dσ̂(0)(gg → gg) ⊗ d
(1)
g→Q(z)

The cut diagram Fig. 6 only contributes to the part of ∆c11
proportional to C2

A:

∆coq
11

=
(

−48v2 +
8v1(1 − 2v + 2v2)

vw2 +
16(1 − 3v + 2v2)

w

+
8v2(7 − 14v + 8v2)w

v2
1

− 16v3(−1 + 2v)w2

v2
1

+
16v4w3

v2
1

+
8vv2

1

Y 3 − 8(3v − 5v2 + 2v3)
Y 2

+
8(7v − 6v2 + 2v3)

Y

)
ln

µ′
F

2

m2 . (54)

f
(1)
g→Q(x1) ⊗ dσ̂(0)(Qg → Qg)

The u-channel cut in the initial state described by the
diagram in Fig. 7 contributes

∆cqed
11 =

1 + v2

vw
(1 − 2w + 2w2)ln

µF
2

m2 , (55)

∆coq
11 =

1 + v2

v2
1

2
w

(1 − 2w + 2w2)ln
µF

2

m2 , (56)

∆ckq
11 = −∆coq

11 . (57)

Fig. 7. Feynman diagrams representing f
(1)
g→Q(x1) ⊗

dσ̂(0)(Qg → Qg)

Fig. 8. Feynman diagrams representing f
(1)
g→Q(x2) ⊗

dσ̂(0)(gQ → Qg)

f
(1)
g→Q(x2) ⊗ dσ̂(0)(gQ → Qg)

Finally, we have a contribution from the t-channel cut in
the initial state described by the diagram in Fig. 8:

∆cqed
11 =

(
v(−1 + 2v)

v1
− v2w

v1
+

2v1v

X3 − 2v

X2

+
v(3 − 4v + 2v2)

v1X

)
ln

µF
2

m2 , (58)

∆coq
11 =

(
2v

v1
+

4(1 − 2v + 2v2)
v1vw2 +

4(1 − 4v + 2v2)
v1w

+
4vv1

X2 +
4v(1 − 2v)

X

)
ln

µF
2

m2 , (59)

∆ckq
11 = −∆coq

11 . (60)

The sum of (55) and (58), that of (56) and (59), and that
of (57) and (60) are identical to (44), (45), and (46) in [12],
respectively.

4.2 Subtraction terms for q + q̄ → Q + Q + g

The results for the coefficients ∆ci have the following
color decomposition:

∆ci = Cq(s)
CF

2
(
CF∆ccf

i + CA∆cca
i

)
, (61)

with

Cq(s) =
α3

s

2Ns
. (62)

There are two different cut diagrams contributing to the
total result.

dσ̂(0)(qq̄ → QQ) ⊗ d
(1)
Q→Q(z)

Figure 9 shows the diagram with a cut in the final state. The
2 → 2 process cross section dσ̂(qq̄ → QQ) is proportional
to the function

τq(v) = (1 − v)2 + v2 +
2m2

s
, (63)

which will occur in the results below. Furthermore, for
this contribution, the CA parts vanish, i.e., ∆cca

i = 0

Fig. 9. Feynman diagrams representing dσ̂(0)(qq̄ → QQ) ⊗
d
(1)
Q→Q(z)
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(i = 1, 2, 3, 5, 10, 11). Therefore, the final results are pro-
portional to the color factor C2

F:

∆c1 =

[(
3
4

+ ln v

)
ln

µ′
F

2

m2 + 1 − ln v − ln2 v

]

×2Cq(s)τq(v)C2
F , (64)

∆c2 =

(
ln

µ′
F

2

m2 − 1 − 2 ln v

)
× 2Cq(s)τq(v)C2

F , (65)

∆c3 = −2 × 2Cq(s)τq(v)C2
F , (66)

∆c5 = 2Cq(s)C2
F

×
[
v − 2vv2

1

Y 3 +
2v2v1

Y 2 − 3v − 6v2 + 4v3

Y

+
m2

s
2v

(
1 − 1

Y

)]
. (67)

Finally, we find again

∆c10 = ∆c5 , (68)

∆c11 =
1
2

∆c5

(
1 − ln

µ′
F

2

m2

)
. (69)

One can observe the same structure of the results as for
dσ̂(0)(gg → QQ) ⊗ d

(1)
Q→Q(z) given in Sect. 4.1.

Now we turn again to the comparison with the results
in [12]. For µ′

F = m (and neglecting terms of the order
O(m2/s)), (64)–(69) are identical to (51)–(54) in [12]. The
parts proportional to ln(µ′ 2

F /m2) in (64) and (65) coincide
with (60) and (61) in [12]. As for ∆c11 in (69), the part
proportional to ln(µ′ 2

F /m2) is in agreement with (62) in [12]
only after including the contribution from dσ̂(qq̄ → gg) ⊗
d
(1)
g→Q(z), which will be given in the next subsection.

dσ̂(0)(qq̄ → gg) ⊗ d
(1)
g→Q(z)

The result for the cut diagram Fig. 10 reads

∆ccf
11 =

[
2v(3 − 4v + 2v2)

v1
+

2(1 − 2v + 2v2)
w

− 4v3w

v1

+
4v3w2

v1
− 4v

Y

]
ln

µ′
F

2

m2 , (70)

Fig. 10. Feynman diagrams representing dσ̂(0)(qq̄ → gg) ⊗
d
(1)
g→Q(z)

∆cca
11 =

[
4(2 − v)v − 4v2w − 4vv2

1

Y 3 +
4(3v − 5v2 + 2v3)

Y 2

− 2(9v − 12v2 + 4v3)
Y

]
ln

µ′
F

2

m2 . (71)

Since ∆c11 in (69) only has a CF part, (71) is the only
contribution to the CA part and hence is in agreement
with (64) in [12]. Furthermore, it is easy to see that the
sum of ∆ccf

11 in (69), taken from the part ∝ ln(µ′ 2
F /m2),

and ∆ccf
11 in (70) reproduces (63) in [12].

4.3 Subtraction terms for g + q → Q + Q + q

The process gq → QQq appears for the first time at NLO.
It has the color decomposition

∆ci = Cgq(s)
(
CF∆ccf

i + CA∆cca
i

)
, (72)

with

Cgq(s) =
α3

s

2Ns
. (73)

There are two different cut diagrams contributing to the
total result. The results for the process gq̄ → QQq̄ are the
same as can be easily seen with the help of the expressions
in Appendix A.3.

dσ̂(0)(gq → gq) ⊗ d
(1)
g→Q(z)

For the cut diagram shown in Fig. 11, we find

∆ccf
11

=
(

−2v2 +
1 − 2v + 2v2

2w
+ 2v2w − v1v

2Y 2

+
3v − 2v2

2Y

)
ln

µ′
F

2

m2 , (74)

∆cca
11

=
(

−v2 +
v2(2 − 4v + 3v2)w

v2
1

+
2v3(1 − 2v)w2

v2
1

+
2v4w3

v2
1

+
v

2Y

)
ln

µ′
F

2

m2 . (75)

Equations (74) and (75) are in agreement with (69) and
(70) in [12].

Fig. 11. Feynman diagrams representing dσ̂(0)(gq → gq) ⊗
d
(1)
g→Q(z)
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Table 1. Collinear subtraction terms for the partonic subprocesses
g + g → Q + Q + g, q + q̄ → Q + Q + g and g + q → Q + Q + q in compari-
son with the results of [12]. In the second column, ‘µ′

F = m’ indicates that
the final-state factorization scale µ′

F has to be set to m in the equations in
the third column. Furthermore, ∝ ln µ′

F
2

m2 (∝ ln µF
2

m2 ) refers to those parts of

the equations in the third column which are proportional to ln µ′
F

2

m2 (ln µF
2

m2 ).
The third and fourth columns list the equation numbers for the corresponding
subtraction terms derived in this paper and in [12], respectively. Equations
combined by a “plus” sign have to be added

channel this paper [12]

gg → QQg: µ′
F = m (46)–(53) (18), (21)–(24)

∝ ln µ′
F

2

m2 (46), (47) (37), (38)

∝ ln µ′
F

2

m2 (53)[QED-part], (53)[KQ-part] (41), (43)

∝ ln µ′
F

2

m2 (53)[OQ-part]+(54) (42)

∝ ln µF
2

m2 (55)+(58), (56)+(59), (57)+(60) (44), (45), (46)

qq̄ → QQg: µ′
F = m (64)–(69) (51)–(54)

∝ ln µ′
F

2

m2 (64), (65) (60), (61)

∝ ln µ′
F

2

m2 (69)[CF-part] + (70) (63)

∝ ln µ′
F

2

m2 (71) (64)

gq → QQq: ∝ ln µ′
F

2

m2 (74), (75) (69), (70)

∝ ln µF
2

m2 (76) (68)

Fig. 12. Feynman diagrams represent-
ing f

(1)
g→Q(x1) ⊗ dσ̂(0)(Qq → Qq)

f
(1)
g→Q(x1) ⊗ dσ̂(0)(Qq → Qq)

The contribution of the cut diagram in Fig. 12 is given by

∆ccf
11 =

1 + v2

2v2
1w

(
1 − 2w + 2w2) ln

µF
2

m2 , (76)

∆cca
11 = 0 . (77)

Equation (76) is identical to (68) in [12].

5 Conclusions and discussion

We have presented a detailed description of the deriva-
tion of collinear subtraction terms with the help of mass
factorization keeping the heavy-quark mass as a regulator
for collinear divergences. As an example, we have consid-
ered heavy-quark production in hadron-hadron collisions,
which is the most complex case. With one minor exception
(see below), we have reproduced all the subtraction terms
derived in [12] and found nice agreement. For a summary of
the comparison, see Table 1. Apart from giving additional
insight and providing a consistency check of our previous
results, this detailed example will be useful for extending
the GM-VFN scheme to other processes.

Note however, that some exceptions have been found.

(i) In (25) of [12], we have found an extra contribution
to the coefficient ∆c1 in the gg → QQ channel resulting
in a modification ∆c1 → ∆c1 − C(s)CA

1
9 v(1 − v). This

extra piece has its origin in heavy-quark loop contributions
to the virtual corrections to the Born process gg → QQ
in [34] and has no counterpart in the results of Sect. 4.1.
However, these terms are absent in the massless limit of
the calculation in [3, 4]. Numerically, this modification of
∆c1 turned out to be negligible.
(ii) In a publication by two of us [32], subtraction terms for
the non-Abelian part of the process γg → QQg have been
derived by comparing the zero-mass limit of [43] with the
massless theory of [44], which do not meet the expectations
of mass factorization in Sect. 3. The subtraction terms de-
rived this way correctly describe the transition between
the two theories. Obviously, if one of the theories uses con-
ventions differing from the conventional MS scheme, the
results will not agree with the subtraction terms derived
via mass factorization. Whether this is indeed the reason
for the discrepancy, can be clarified only with the help of
a new full calculation. It is noteworthy that also for the
channel γq → QQq a non-vanishing result for the coeffi-
cient ∆c11 (see (78) in [32]) was found, which would have
been zero employing the methods in Sect. 3. In this case,
the difference could be traced back to an error in [44].
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Fig. 13a–d. Feynman diagrams for the NLO gluon bremsstrahlung process γ + g → Q + Q + g. Reversing the heavy-quark
lines yields the remaining graphs. Diagrams obtained from the ones shown here by replacing the photon with a gluon contribute
to g + g → Q + Q + g
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Fig. 14a–g. Additional Feynman diagrams for the NLO gluon brems-
strahlung process g + g → Q + Q + g. Replacing the photons by gluons
in Fig. 13 and reversing the heavy-quark lines of part a yields the re-
maining graphs
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Appendix A:
Cross sections for 2 → 2 subprocesses

In this appendix, we list the cross sections for all one-
particle-inclusive subprocesses, a + b → c + X, needed
to compute the subtraction terms in Sect. 4. For brevity,
part X of the final state is not written explicitly in the
following. We begin with subprocesses occurring in the
channel g + g → Q + Q + g, needed in Sect. 4.1.

A.1 Subprocesses in g + g → Q + Q + g

dσ̂(0)

dv̂
(gg → Q)

= α2
s π

1
(N2 − 1)

1
ŝ

[CF − Nv̂(1 − v̂)] τ(ŝ, v̂) , (A.1)

dσ̂(0)

dv̂
(gg → g) = α2

s π
4N2

N2 − 1
1
ŝ

(1 − x)3

x2 , (A.2)

dσ̂(0)

dv̂
(gQ → Q)

= α2
s π

1
N2 − 1

1
ŝ

1 + (1 − v̂)2

v̂
2CF[CFv̂2 + N(1 − v̂)]

× 1
v̂(1 − v̂)

, (A.3)

dσ̂(0)

dv̂
(Qg → Q) =

dσ̂(0)

dv̂
(gQ → Q)

∣∣∣∣
v̂↔1−v̂

= α2
s π

1
N2 − 1

1
ŝ

1 + v̂2

1 − v̂
2CF

[
CF(1 − v̂)2 + Nv̂

]
× 1

v̂(1 − v̂)
, (A.4)

where

τ(ŝ, v̂) =
v̂

1 − v̂
+

1 − v̂

v̂

+
4m2

ŝv̂(1 − v̂)

(
1 − m2

ŝv̂(1 − v̂)

)
, (A.5)

x = v̂(1 − v̂) . (A.6)

A.2 Subprocesses in q + q̄ → Q + Q + g

dσ̂(0)

dv̂
(qq̄ → Q) = α2

s π
CF

N

1
ŝ

[
(1 − v̂)2 + v̂2 +

2m2

ŝ

]
,

(A.7)

dσ̂(0)

dv̂
(qq̄ → g) =

dσ̂(0)

dv̂
(gg → Q)

∣∣∣∣
m→0

= α2
s π

1
N2 − 1

1
ŝ

[CF − Nv̂(1 − v̂)]

×
(

v̂

1 − v̂
+

1 − v̂

v̂

)
. (A.8)
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Fig. 15a–e. Feynman diagrams for the NLO gluon bremsstrahlung process q + q̄ → Q + Q + g

A.3 Subprocesses in g + q → Q + Q + q
and g + q̄ → Q + Q + q̄

dσ̂(0)

dv̂
(qg → g)

= α2
s π

1
2N2

1
ŝ
(2 − 2v̂ + v̂2)

[
(N2 − 1)v̂2 + 2N2(1 − v̂)

]
× 1

v̂2(1 − v̂)
, (A.9)

dσ̂(0)

dv̂
(gq → g) =

dσ̂(0)

dv̂
(qg → g)

∣∣∣∣
v̂↔1−v̂

= α2
s π

1
2N2

1
ŝ
(1 + v̂2)

[
(N2 − 1)v̂2 + 2v̂ + (N2 − 1)

]
× 1

v̂(1 − v̂)2
, (A.10)

dσ̂(0)

dv̂
(Qq → Q) = α2

s π
CF

N

1
ŝ

1 + v̂2

(1 − v̂)2
, (A.11)

dσ̂(0)

dv̂
(Qq̄ → Q) =

dσ̂(0)

dv̂
(Qq → Q) . (A.12)

Appendix B: Feynman diagrams

In this appendix we list the bremsstrahlung Feynman dia-
grams contributing at NLO to the process p+ p̄ → H +X
(H denotes a heavy meson, D, D�, B, . . .) in the FFNS.
They are the basis to generate the cut diagrams Figs. 5–12
as described in Sect. 3.2. We show separately the subset of
Feynman diagrams for gg → QQg which, after replacing
one of the incoming gluons by a photon, contribute also to
heavy-quark photoproduction, γ + p → H + X.
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